汪茂老师,Ph.D., MSBE, MSEE
职称:教授,博导 | |||||||
办公室:无线谷2301 | |||||||
办公电话:17368703384 | |||||||
Email:wangmao@seu.edu.cn | |||||||
学习经历: | |||||||
毕业于tyc234cc 太阳成集团无线电工程系(1984年本科, 1987年研究生)。1991年于美国肯塔基大学(University of Kentucky, Lexington, Kentucky, USA)生物医学工程系及Wenner-Gren宇航实验室获生物医学工程(Biomedical Engineering)硕士学位,1995年于美国肯塔基大学电气与计算机工程系获电子与计算机(Electrical and Computer Engineering)博士学位。 | |||||||
工作经历: | |||||||
1995至2003年美国摩托罗拉现代无线技术研究中心(MotorolaAdvanced Radio Technology, Arlington Heights,Illinois, USA)任高级研究员。2003年至2015年,在美国高通研究中心(QualcommResearch,San Diego,California,USA)任高级主管研究员。2015年底,加入tyc234cc 太阳成集团及移动通信国家重点实验室,任特聘教授、博士生导师。 | |||||||
教授课程: | |||||||
Fundamentals of Wireless and Mobile Communications Networks Modern Communications and Applications Wireless Communication Fundamentals | |||||||
研究方向: | |||||||
研究方向为现代无线网络与移动通信理论与技术 (Wireless Networking and Mobile Communications),目前具体研究内容有:宽带无线传输理论与多址接入技术 (wireless multiple access on licensed and unlicensed spectrum);地面及卫星通信(terrestrial and satellite communications); 4G LTE及5G/6G移动通信 (5G/6G mobile communications networks);物联网无线网络(machine-type communication for IoT),包括车辆物联网(vehicular IoT)、海事物联网(maritime IoT)、能源物联网(energy IoT);多输入多输出技术(MIMO networks); 无线通信网络仿真系统(wireless network simulations); 机器学习和人工智能(machine learning and artificial intelligence)在无线通信中的应用。 | |||||||
获奖情况: | |||||||
从1995年加入美国摩托罗拉无线技术研究中心起,一直从事现代无线通信理论研究及技术开发。在摩托罗拉无线技术研究中心期间参与了CDMA蜂窝系统(2G IS-95、3G WCDMA)设计,三次获重大科技发明奖和杰出成就奖(Distinguished Achievement),被授予杰出科技发明家荣誉称号(Distinguished Innovator)。在高通研究中心,进行了MediaFLO多媒体广播系统的研制,成为 TIA1099 Terrestrial Multimedia Multicast国际标准,是该系统的主要贡献者。其后又进行了OFDMA蜂窝系统研发,成为 TIA/3GPP2 Ultra Mobile Broadband Air Interface 及 IEEE 802.20 Mobile Broadband Wireless Access 两个国际标准,荣获 TIA/3GPP2 Ultra Mobile Broadband Air Interface奖、3GPP2 Ultra Mobile Broadband 成果奖。之后,致力于4G LTE、5G及物联网技术的研发。共获得九十多项美国专利,发表五十余篇IEEE期刊论文,著有开拓性的物联网通信学术专著一本。 | |||||||
论文著作: | |||||||
学术专著: Michael Mao Wang, Jingjing Zhang, Machine-Type Communication for Maritime Internet of Things: From Concept to Practice, New York: Springer, 2021. 论文: [1] Jingjing Zhang, Michael Mao Wang, Xiaohu You, “Maritime autonomous surface shipping from a machine-type communication perspective,” IEEE Communications Magazine, vol. 61, no. 10, pp. 184-190, October 2023. [2] Michael Mao Wang, Jingjing Zhang, Xiaohu You, “Proximity-Based Maritime Internet of Things: A Service-Centric Design,” IEEE Access, vol. 11, pp. 101205-101240, 2023. [3] Michael Mao Wang, “Ultra-low energy Internet of Things from a device and network perspective,” IEEE Wireless Communications,vol. 60, no. 12, pp. 50-55, Dec. 2022. [4] Fenghui Zhang, Michael Mao Wang, Xiaohu You, “QoS Optimization for Mobile ad hoc cloud: A multi-agent independent learning approach,” IEEE Transactions on Vehicular Technology, vol. 71, no. 1, pp.1077-1082, January 2022. [5] Fenghui Zhang, Michael Mao Wang, “Centralized resource allocation and distributed power control for NOMA-integrated NR V2X,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16522–16534, 2021. [6] Michael Mao Wang, Jingjing Zhang, Xiaohu You, “Machine-type communication for maritime Internet of Things: A design,” IEEE Communications: Surveys and Tutorials,vol. 22, no. 4, pp. 2550–2585, 2020. [7] Fenghui Zhang, Michael Mao Wang, Ruilong Deng, “On reliability bound and improvement of sensing-based semi-persistent scheduling in LTE-V2X,” IEEE Internet of Things Journal, vol. 8, no. 7, 2021 [8] Fenghui Zhang, Michael Mao Wang, “Stochastic congestion game for load balancing in mobile-edge computing,” IEEE Internet of Things Journal, vol. 8, no. 2, 2021. [9] Xiaohu You, Cheng-Xiang Wang, Jie Huang, Xiqi Gao, Zaichen Zhang, Mao Wang, “Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts,” Science China: Information Sciences, vol. 64, Article number 110301, 2021. [10] Jingjing Zhang, Michael Mao Wang, Tingting Xia, and Lei Wang, “Maritime IoT: An architectural and radio spectrum perspective,” IEEE Access, vol. 8, pp. 93109–93122, 2020. [11] Tingting Xia, Michael Mao Wang, Jingjing Zhang, and Lei Wang, “Maritime Internet of Things: Challenges and solutions, ” IEEE Wireless Communications, vol. 27, no. 2, pp. 188–196, April 2020. [12] Tingting Xia, Michael Mao Wang, Chengling Jiang, Lei Wang and Xiaohu You, “Practical machine-type communication for energy Internet of Things,”IEEE Communications Standards Magazine,vol. 13, no. 1, pp. 48–59, March 2019. [13] Tingting Xia, Michael Mao Wang, and Xiaohu You, “Satellite machine-type communication for maritime Internet of Things: An interference perspective,” IEEE Access,vol. 7, pp. 76404–76415, 2019. [14] Jingjing Zhang, MichaelMao Wang, and Tingting Xia, “Practical synchronization waveform for massive machine-type communications,” IEEE Transactions on Communications, vol. 67, no. 2, pp. 1467-1479, February 2019. [15] Jingjing Zhang, Mao Wang, Min Hua, Tingting Xia, Wenjie Yang, and Xiaohu You, “LTE on license-exempt spectrum,” IEEE Communications: Surveys and Tutorials, vol. 20, no. 1, pp. 647-673, 2018. [16] Jingjing Zhang, Mao Wang, Min Hua, Wenjie Yang, and Xiaohu You, “Robust synchronization waveform design for massive Internet of Things,” IEEE Transactions on Wireless Communications, vol. 16, no.11, pp. 7551-7559, November 2017. [17] Wenjie Yang, Min Hua, Jingjing Zhang, Tingting Xia, Jun Zou, Chengling Jiang, Mao Wang, “Enhanced system acquisition for NB-IoT,” IEEE Access, vol.5, pp.13179-13191, July 2017. [18] Wenjie Yang, Mao Wang, Jingjing Zhang, Jun Zou, Min Hua, Tingting Xia, Xiaohu You, “Narrowband wireless access for low-power massive Internet of Things: A bandwidth perspective,” IEEE Wireless Communications, vol.24, no.3, pp. 138-145, June 2017. [19] Mao Wang, Jingjing Zhang, Bingying Ren, Wenjie Yang, Jun Zou, Min Hua, Xiaohu You, “The evolution of LTE physical layer control channels,” IEEE Communications Surveys and Tutorials, vol. 18, no. 2, pp. 1336-1354, 2016. [20] Bingying Ren, Mao Wang, Jingjing Zhang, Wenjie Yang, Jun Zou, Min Hua, Xiaohu You, “Cellular communications on license-exempt spectrum,” IEEE Communications Magazine, vol. 54, no. 5, pp. 146-153, May 2016. [21] Mao Wang, Wenjie Yang, Jun Zou, Bingying Ren, Min Hua, Jingjing Zhang, Xiaohu You, “Cellular machine-type communications: Physical challenges and solutions,” IEEE Wireless Communications, vol. 23, no. 2, pp. 108-117, April 2016. [22] Kingsley Jun Zou, Kristo Wenjie Yang, Mao Wang, Bingyin Ren, Jason Jinsong Hu, Jingjing Zhang, Min Hua, Xiaohu You, “Network synchronization for dense small cell networks,” IEEE Wireless Communications, vol. 22, No. 2, pp.108-117, April 2015. [23] Min Hua, Mao Wang, Kristo Wenjie Yang, Kingsley Jun Zou, “Analysis of the frequency offset effect on Zadoff-Chu sequence timing performance”, IEEE Transactions on Communications, vol. 62, no. 11, pp. 4024-4039, November 2014. [24] Kristo Wenjie Yang, Mao Wang, Kingsley Jun Zou, Min Hua, Jason Jinsong Hu, Jingjing Zhang, Weixing Sheng, Xiaohu You, “Device discovery for multi-hop cellular networks with its application in LTE,” IEEE Wireless Communications, vol. 21, no. 5, pp. 24-34, October 2014. [25] Chunliang Yang, Jianxin Wang, Mao Wang, Kingsley Jun Zou, Kristo Wenjie Yang, Min Hua, “Over-the-air signaling in cellular communication systems,” IEEE Wireless Communications, vol. 21, no. 4, pp. 120-129, August 2014. [26] Kinsley Jun Zou, Mao Wang, Kristo Wenjie Yang, Jingjing Zhang, Weixin Sheng, Qian Chen, Xiaohu You, “Proximity discovery for device-to-device communications over a cellular network,” IEEE Communications Magazine, vol. 52, no. 6, pp. 98-107, June 2014. [27] Chunliang Yang, Mao Wang, Jianxin Wang, Feng Shu, Xiaohu You, “Single-tone signaling design for inter-cell interference management with applications to femtocell networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1242-1255, March 2014. [28] Michael Mao Wang, “Dynamic gain management for on-channel repeaters,” IEEE Transactions on Broadcasting, vol. 59, no. 4, pp. 685-692, December 2013. [29] Min Hua, Mao Wang, Kristo Wenjie Yang, Xiaohu You, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen, “Analysis of the frequency offset effect on random access signals,” IEEE Transactions on Communications, vol. 61, no. 11, pp. 4728-4740, November 2013. [30] Kingsley Jun Zou, Mao Wang, Jingjing Zhang, Feng Shu, Jianxin Wang, Yuwen Qian, Weixing Sheng, Qian Chen, “Discovery signal design and its application to peer-to-peer communications in OFDMA cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. 3995-4009, August 2013. [31] Chengling Jiang, Michael Mao Wang, Chunliang Yang, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen, “Multi-user MIMO with limited feedback using alternating codebooks,” IEEE Transactions on Communications, vol. 60, no. 2, pp. 333-338, February 2012. [32] Shu Feng, Michael Mao Wang, Wang Yaxi, Fan Haiqiang, Lu Jinhui, “An Efficient Power Allocation Scheme for Leakage-based Precoding in Multi-cell Multiuser MIMO Downlink,” IEEE Communications Letters, vol. 15, no. 10, pp. 1053-1055, October 2011. [33] Michael Mao Wang, Avneesh Agrawal, Aamod Khandekar, Sandeep Aedudodla, “Preamble design, system acquisition, and determination in modern OFDMA cellular Communications: An Overview,” IEEE Communications Magazine, vol. 49, no. 7, pp. 164-175, July 2011. [34] Qingchuan Zhang, Feng Shu, Mao Wang, Jintao Sun, “Relay selection schemes for precoded cooperative OFDM and their achievable diversity orders,” IEEE Signal Processing Letters, vol. 18, no. 4, pp. 231-234, April 2011. [35] Chengling Jiang, Michael Mao Wang, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen, “MIMO precoding using rotating codebooks,” IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 3, pp. 1222-1227, March 2011. [36] Shu Feng, Mao Wang, Liu Tingting, “Leakage-based precoding with power allocation for multicellular multiuser MIMO downlink,” IET Electronics Letters, vol. 46, no. 24, pp. 1629-1630, November 2010. [37] Tingting Liu, Mao Wang, Yan Liang, Feng Shu, Jianxin Wang, Weixin Shen, Qian Chen, “A minimum complexity high performance channel estimator for MIMO-OFDM communications,” IEEE Transactions on Vehicular Technology, vol. 59, no. 9, pp. 4634-4639, November 2010. [38] Tyler Brown, Michael Mao Wang, “Performance analysis of orthogonal signaling over fast fading channels,” IEEE Transactions on Consumer Electronics, vol. 56, no. 4, pp. 2067-2071, November 2010. [39] Michael Mao Wang, Tingfan Ji, “Dynamic resource allocation for interference management in orthogonal frequency division multiple access cellular communications,” IET Communications,vol. 4, no. 6, pp. 675-682, June 2010. [40] Michael Mao Wang, Tom Richardson, Ravi Palanki, Alex Gorokhov, “Beacon signaling and its application to inter-carrier handoff in OFDMA cellular communications,” IEEE Communications Letters, vol.13, pp.896-898, December 2009. [41] Michael Mao Wang, Jaber Borron, Tom Richardson, Min Dong, “Interference management and handoff techniques,” IEEE Vehicular Technology Magazine, vol. 4, no. 4, pp.64-75, December 2009. [42] Michael Mao Wang, Lei Xiao, Tyler Brown, Min Dong, “Optimal symbol timing for OFDM wireless communications,” IEEE Transactions on Wireless Communications, vol.8, pp.5328-5337, October 2009. [43] Michael Mao Wang, Tyler Brown, “Optimal blind transport format detection for UMTS uplink,” IEEE Transactions on Communications, vol. 56, no. 6, pp. 866-870, June 2008. [44] Michael Mao Wang, Tyler Brown, Hua Xu, Phil Fleming, “Walsh code assignment and data structure for variable data rate communications,” IEEE Transactions on Communications, vol.56, no.3, pp. 339-343, March 2008. [45] Tyler Brown, and Michael Mao Wang, “An iterative algorithm for single-frequency estimation,” IEEE Transactions on Signal Processing, vol.50, pp.2671-2682, November 2002. [46] Michael Mao Wang, Weimin Xiao, Tyler Brown, “Soft decision metric generation for QAM with channel estimation error,” IEEE Transactions on Communications, vol. 50, pp. 1058-1061, July 2002. [47] Fuyun Ling, Bob Love, Michael Mao Wang, Tyler Brown, Phil Fleming, Hua Xu, Behavior and performance of power controlled IS-95 reverse link under soft handoff,” IEEE Transactions on Vehicular Technology, vol. 49, pp. 1697-1704, September 2000. [48] Michael Mao Wang, Joyce Evans, Laurence Hassebrook, Charles Knapp, A multistage, optimal active contour model,” IEEE Transactions on Image Processing, vol. 5, no. 11, pp. 1586-1591, November 1996. [49] Mao Wang, Joyce Evans, Laurence Hassebrook, Charles Knapp, An optimized index of human cardiovascular adaptation to simulated weightlessness,” IEEE Transactions on Biomedical Engineering, vol.43, pp.502-511, May 1996. [50] Mao Wang, Joyce Evans, Charles Knapp, Spectral patterns and frequency response characteristics in heart paced dogs,” IEEE Transactions on Biomedical Engineering, vol.42, pp.708-717, July 1995. [51] D. K. Kevenhagen, Joyce M. Evans, Mao Wang, Charles F. Knapp, “Cardiovascular regulation in humans in response to oscillatory lower body negative pressure,” American Journal of Physiology, vol. 36, no. 2, pp. H593-H604, August 1994. | |||||||
科研项目: | |||||||
项目名称 | 项目类别 | 项目时间 | 工作类别 | 项目金额 | |||
大规模物联网长寿原理和器件特性研究 | 国家自然科学基金 | 2024/1-2027/12 | 主持 |
| |||
星载多波束通信接入技术研究 | 上海航天科技创新基金 | 2020/12 - 2021/11 | 主持 |
| |||
海事物联网通信协议研究 | 上海海星地联信息科技有限公司 | 2020/3 - 2021/8 | 主持 |
| |||
新能源无线物联网系统研究与开发 | 国家自然科学基金 | 2018/ 1 - 2021/12 | 主持 |
| |||
VDES系统通信仿真及协议研究 | 中国航天第八研究院 | 2018/ 8 - 2019/ 5 | 主持 |
| |||
Sub-GHz非授权频谱关键技术研究 | XX | 2018/12 - 2019/12 | 主持 |
| |||
VDES卫星系统通信协议研究 | 中国航天第八研究院 | 2017/ 4 - 2017/12 | 主持 |
| |||
能源互联网无线通信系统设计及原型开发合作 | XX | 2016/2 - 2017/2 | 主持系统设计 |
| |||
|
|
|
|
| |||
专利: | |||||||
专利号 | 专利名称 | 专利类型 | |||||
US 9985762 | Discovery signals and network synchronization signals design in LTE | 美国发明专利 | |||||
US 10075266 | Data transmission scheme with unequal code block sizes | 美国发明专利 | |||||
US 9832629 | Discovery signals and network synchronization signals design in LTE | 美国发明专利 | |||||
US 9553706 | Channel estimate under non-uniform reference signal pattern | 美国发明专利 | |||||
US 9356752 | Wide area and local Network ID transmission for communication systems | 美国发明专利 | |||||
US 9391751 | System and method for frequency diversity | 美国发明专利 | |||||
US 9277487 | Cell detection with interference cancellation | 美国发明专利 | |||||
US 9246728 | System and method for frequency diversity | 美国发明专利 | |||||
US 9038140 | Preamble structure and acquisition for a wireless communication system | 美国发明专利 | |||||
US 9204379 | Preamble structure and acquisition for a wireless communication system | 美国发明专利 | |||||
US 9042212 | Method and apparatus for communicating network identifiers in a communication system | 美国发明专利 | |||||
US 9203466 | Acquisition pilots for wireless communication systems | 美国发明专利 | |||||
US 9020009 | Inserted pilot construction for an echo cancellation repeater | 美国发明专利 | |||||
US 9003243 | System and method for modulation diversity | 美国发明专利 | |||||
US 8948329 | Apparatus and methods for timing recovery in a wireless transceiver | 美国发明专利 | |||||
US 8934569 | Highly detectable pilot structure | 美国发明专利 | |||||
US 8929479 | Highly detectable pilot structure | 美国发明专利 | |||||
US 8929353 | Preamble structure and acquisition for a wireless communication system | 美国发明专利 | |||||
US 8886115 | Gain control metric pruning in a wireless repeater | 美国发明专利 | |||||
US 8867987 | Gain control metric computation in a wireless repeater | 美国发明专利 | |||||
US 8848621 | Apparatus and method for cell-based highly detectable pilot multiplexing | 美国发明专利 | |||||
US 8837609 | Guard independent signal mapping | 美国发明专利 | |||||
US 8780767 | Methods and apparatus for including mode information in a frame for system acquisition | 美国发明专利 | |||||
US 8792865 | Method and apparatus for adjusting packet data content by sending null packets based on transmitter signal condition or requirement | 美国发明专利 | |||||
US 8774708 | Estimation of repeater loop delay for repeater gain control | 美国发明专利 | |||||
US 8711973 | Highly detectable pilot structure | 美国发明专利 | |||||
US 8687540 | Echo cancellation repeater using an inserted pilot with gain-based power level control scheme | 美国发明专利 | |||||
US 8638835 | Wireless repeater implementing multi-parameter gain management | 美国发明专利 | |||||
US 8644214 | Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated TDM pilot | 美国发明专利 | |||||
US 8630241 | Methods and apparatus for transmitting a frame structure in a wireless communication system | 美国发明专利 | |||||
US 8626060 | Beacon signals for repeaters within a wireless communications system | 美国发明专利 | |||||
US 8611227 | Channel estimation pruning in presence of large signal dynamics in an interference cancellation repeater | 美国发明专利 | |||||
US 8548375 | Gain control metric computation in a wireless repeater | 美国发明专利 | |||||
US 8509859 | Apparatus and methods for control of sleep modes in a transceiver | 美国发明专利 | |||||
US 20130156124 | System and method for frequency diversity | 美国发明专利 | |||||
US 8463176 | Stability indicator for a wireless repeater | 美国发明专利 | |||||
US 20130235783 | Evolved multimedia broadcast multicast service capacity enhancements | 美国发明专利 | |||||
US 8452230 | Multi-metric gain control for wireless repeater | 美国发明专利 | |||||
US 8442146 | Apparatus and methods for reducing channel estimation noise in a wireless transceiver | 美国发明专利 | |||||
US 8432933 | Method for transmission of time division multiplexed pilot symbols to aid channel estimation, time synchronization, and AGC bootstrapping in a multicast wireless system | 美国发明专利 | |||||
US 20130078907 | Per carrier gain control in a multi-carrier repeater | 美国发明专利 | |||||
US 8396151 | Timing tracking in a multiple receive antenna system | 美国发明专利 | |||||
US 8391410 | Methods and apparatus for configuring a pilot symbol in a wireless communication system | 美国发明专利 | |||||
US 8380122 | Signal blanking for improved frequency domain channel estimation | 美国发明专利 | |||||
US 20120263167 | Timing and frequency acquisition for wireless networks | 美国发明专利 | |||||
US 8285201 | Wideband echo cancellation in a repeater | 美国发明专利 | |||||
US 8265546 | Gain adjustment stepping control in a wireless repeater | 美国发明专利 | |||||
US 8223623 | Timing and frequency acquisition for OFDM systems | 美国发明专利 | |||||
US 8175123 | Collection window positioning using time tracking information | 美国发明专利 | |||||
US 8144818 | Apparatus and methods for determining timing in a communication system | 美国发明专利 | |||||
US 8144824 | Trend influenced time tracking | 美国发明专利 | |||||
US 8009551 | Initial pilot frequency selection | 美国发明专利 | |||||
US 7948907 | Selective network switching in a wireless broadcast network | 美国发明专利 | |||||
US 7852822 | Wide area and local network ID transmission for communication systems | 美国发明专利 | |||||
US 20100284447 | Frequency domain feedback channel estimation for an interference cancellation repeater including sampling of non-causal taps | 美国发明专利 | |||||
US 7835460 | Apparatus and methods for reducing channel estimation noise in a wireless transceiver | 美国发明专利 | |||||
US 7813383 | Method for transmission of time division multiplexed pilot symbols to aid channel estimation, time synchronization, and AGC bootstrapping in a multicast wireless system | 美国发明专利 | |||||
US 7782806 | Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated TDM pilot | 美国发明专利 | |||||
US 7720027 | System and method for a forward link only physical layer | 美国发明专利 | |||||
US 7693124 | Slot-to-interlace and interlace-to-slot converters for an OFDM system | 美国发明专利 | |||||
US 7706463 | Method and apparatus for decoding frame packet data in a communication system | 美国发明专利 | |||||
US 7623607 | Methods and apparatus for determining timing in a wireless communication system | 美国发明专利 | |||||
US 7583584 | System and method for time diversity | 美国发明专利 | |||||
US 7573964 | Channel estimator with extended channel bandwidth | 美国发明专利 | |||||
US 20090116574 | Methods and apparatus for receive power unification for MIMO and non-MIMO signaling | 美国发明专利 | |||||
US 7529531 | Apparatus and methods for estimating a sleep clock frequency | 美国发明专利 | |||||
US20090067352 | Methods and apparatus for including mode information in a frame for system acquisition | 美国发明专利 | |||||
US20080317142 | System and method for frequency diversity | 美国发明专利 | |||||
US 7463910 | Apparatus and method for determining sleep clock timing | 美国发明专利 | |||||
US20080002611 | Managing null packets | 美国发明专利 | |||||
US20070036065 | Method and apparatus for communicating network identifiers in a communication system | 美国发明专利 | |||||
US7145891 | Method and apparatus to provide desired quality-of-service levels to multiple communication services | 美国发明专利 | |||||
US20060233097 | Time tracking for a communication system | 美国发明专利 | |||||
US 20060123310 | System and method for modulation diversity | 美国发明专利 | |||||
US 7058039 | Method and apparatus for selecting a modulation and coding scheme in a wireless communication system | 美国发明专利 | |||||
US20060109781 | System and method for frequency diversity | 美国发明专利 | |||||
US 6856644 | Method and apparatus for forward link power control bit generation in a spread-spectrum communication system | 美国发明专利 | |||||
US 6834075 B2 | Method for improving multipath searcher speed | 美国发明专利 | |||||
US 6813736 | Blind transport format detection for communication | 美国发明专利 | |||||
US 6799024 | Method and apparatus for automatic gain control compensation in a wireless communication system | 美国发明专利 | |||||
US 6728304 | Method and apparatus for performing a signal detection and assignment in a wireless communication system | 美国发明专利 | |||||
US 6683903 | Method and apparatus for synchronization within a spread-spectrum communication system | 美国发明专利 | |||||
US 6622278 | Method and apparatus for formatting a message in a wireless communication system | 美国发明专利 | |||||
US 6580769 | Method and apparatus for backward recursion next state generation in recursive convolutional decoding | 美国发明专利 | |||||
US6498805 | Apparatus and method for estimating channel phase using channel symbol reliability data | 美国发明专利 | |||||
US 6463556 | Method and apparatus for interleaving in a communication system | 美国发明专利 | |||||
US 6137845 | Method of determining an encoding rate in a communication system | 美国发明专利 | |||||
US 6125137 | Apparatus and method for performing a signal search in a coherent wireless communication system | 美国发明专利 | |||||
US 6108324 | Apparatus and method for performing a signal search in a wireless communication system | 美国发明专利 | |||||
US 6084904 | Method and apparatus for adjusting a power control setpoint threshold in a wireless communication system | 美国发明专利 | |||||
US 5974079 | Method and apparatus for encoding rate determination in a communication system | 美国发明专利 | |||||
US 5881093 | Method of interleaving a convolutionally coded signal in a spread spectrum communication system | 美国发明专利 | |||||
US 5878098 | Method and apparatus for rate determination in a communication system | 美国发明专利 | |||||
US 5671255 | Method and apparatus for determining coding rate in a wireless communication system | 美国发明专利 | |||||
DE 69835018 | Verfahren zur einstellung der leistungsregelungsschwelle in einem drahtlosen kommunikationssystem (德国专利) | 美国发明专利 |