职称:副教授、硕士/博士生导师 | ||||||
办公室:无线谷A3号楼3312室 | ||||||
办公电话: | ||||||
Email:qiwu@seu.edu.cn | ||||||
学习经历: | ||||||
2015.03-2019.03,博士,tyc234cc 太阳成集团,电磁场与微波技术专业 2016.10-2017.10,博士生联合培养,日本东京工业大学,Ando&Hirokawa实验室 2012.09-2015.03,硕士,tyc234cc 太阳成集团,电磁场与微波技术专业 2008.09-2012.06,学士,中国传媒大学信息工程学院,通信工程专业 | ||||||
工作经历: | ||||||
2023.04至今,tyc234cc 太阳成集团/毫米波全国重点实验室,副教授 2019.04-2023.04,tyc234cc 太阳成集团/毫米波全国重点实验室,讲师 | ||||||
学术兼职: | ||||||
1. 2024年至今:IEEE OJAP副主编 2. IEEE TAP/AWPL/MWCL/MTT等期刊审稿人 3. IEEE EuCAP/APCAP等会议分会场主席 | ||||||
教授课程: | ||||||
本科生教学: 《信息通信网络概论(双语)》,48学时,九龙湖校区,秋季学期 《工程图学》,32学时,九龙湖校区,暑期学期 | ||||||
研究方向: | ||||||
1. 人工智能驱动的射频电路、天线设计(iART, AI-Powered Antenna and Radiofrequency Technologies) 2. 微波毫米波天线理论与技术 3. 微波毫米波无源电路理论与技术 每年招收硕士、博士研究生(学术、专业、工程硕博)若干名,提供服务器等优质的硬件条件,并资助参与国内外会议学术交流,欢迎优秀学生推免、报考。 | ||||||
获奖情况: | ||||||
1. tyc234cc 太阳成集团,“至善青年学者”,2022年 2. 江苏省委组织部,“双创计划(双创博士)”,2020年 3. IEEE AP-S SPC Honorable Mention, 2018年 | ||||||
论文著作: | ||||||
专著: [1] 《智能微波工程》,王海明、无奇,科学出版社,2023 [2] Qi Wu, Haiming Wang, Wei Hong, “Machine Learning-Assisted Optimization and Its Application to Antenna and Array Designs”, Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning, John Wiley & Sons, 2023 [3] Qi Wu, Haiming Wang, Wei Hong, “Millimeter-wave antenna designs”, Wiley 5G Ref: The Essential 5G Reference Online, John Wiley & Sons, 2019 在IEEE TAP及IEEE AWPL等电磁领域顶级刊物,及IEEE AP-S及IEEE EuCAP等顶级会议等发表论文多篇,其中代表性期刊论文包括: [1] Qi Wu, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong. “Machine Learning-Assisted Optimization for Antenna Geometry Design”, IEEE Trans. Antennas Propag., vol. 72, no. 3, pp. 2083-2095, 2024. [2] Qi Wu, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong. “Knowledge-guided active-base-element modeling in machine-learning-assisted antenna-array design”, IEEE Trans. Antennas Propag., vol. 71, no. 2, pp. 1578-1589, 2023. [3] Qi Wu, Haipeng Yu, Yiming Yu, Songtao Gao, Chen Yu, and Haiming Wang, “Multi-resonance dual-polarised symmetrically cross-slotted square patch antenna for 5G millimetre-wave broadband applications”, Electron. Lett., vol. 59, no. 6, 2023. [4] Qi Wu, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong. “Machine learning-assisted array synthesis using active base element modeling”, IEEE Trans. Antennas Propag., vol.70, no. 7, pp. 5054-5065, 2022. [5] Qi Wu, Xiaohua Long, Jiexi Yin, Haiming Wang and Wei Hong. “Single-layer 1-bit prephased single-beam metasurface using true time delayed unit cells”, IEEE Antennas Wireless Propag. Lett., vol. 21, no. 6, pp. 1095-1099, 2022. [6] Qi Wu, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong. “Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and arrays”, IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 6052 - 6057, 2021. [7] Qi Wu, Haiming Wang, and Wei Hong. “Multi-stage collaborative machine learning and its application to antenna modeling and optimization”, IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3397-3409, 2020. [8] Qi Wu, Yi Cao, Haiming Wang, and Wei Hong. “Machine-learning-assisted optimization and its application to antenna designs: opportunities and challenges”, China Communications, pp. 164-176, 2020. [9] Qi Wu, Jiexi Yin, Haiming Wang, Chen Yu, and Wei Hong. “Broadband planar multi-resonance substrate integrated waveguide-like cavity-backed slot antennas using unbalanced shorting vias”, IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, pp. 363-367, 2019. [10]Qi Wu, Jiro Hirokawa, Haiming Wang, Chen Yu, and Wei Hong. “Millimeter-wave multibeam endfire dual circularly polarized antenna array for 5G applications”, IEEE Trans. Antennas Propag., vol. 66, no. 09, pp.4930-4935, 2018. [11]Qi Wu, Haiming Wang, Chen Yu, and Wei Hong. “Low-profile millimeter-wave SIW cavity-backed dual-band CP antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7310-7315, 2017. [12]Qi Wu, Jiro Hirokawa, Haiming Wang, Chen Yu, and Wei Hong. “Low-profile millimeter-wave broadband circularly polarized antenna array using stacked curl elements and full corporate-feeding network”, IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7052-7062, 2017. [13]Qi Wu, Haiming Wang, Chen Yu, and Wei Hong. “Low-profile circularly polarized cavity-backed antennas using SIW techniques”, IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2832-2839, 2016. [14]Qi Wu, Haiming Wang, Chen Yu, Xiaowei Zhang, and Wei Hong. “L/S-band dual circularly polarized antenna fed by 3-dB coupler,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 426-429, 2015. [15]Qi Wu, Haiming Wang, Chen Yu, Xiaowei Zhang and Wei Hong. “Dual-band SICL branch-line coupler,” Microw. Opt. Tech. Lett., vol. 57, issue 5, pp. 1246-1249, 2015. [16]M. Cheng, Qi Wu, C. Yu, H. Wang and W. Hong, “A Prephased Electronically Steered Phased Array That Uses Very-Low-Resolution Phase Shifters and a Hybrid Phasing Method,” IEEE Trans. Antennas Propag., vol. 71, no. 9, pp. 7310-7322, Sept. 2023. [17]J. Yin, Qi Wu, H. Wang and Z. N. Chen, “Prephase-Based Equivalent Amplitude Tailoring for Low Sidelobe Levels of 1-Bit Phase-Only Control Metasurface Under Plane Wave Incidence,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp. 10604-10613, Nov. 2022 [18]B. Han, Qi Wu, C. Yu, H. Wang, X. Gao and N. Ma, “Ultracompact Dual-Polarized Cross-Dipole Antenna for a 5G Base Station Array With a Low Wind Load,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 9315-9325, Oct. 2022. [19]Weiqi Chen, Qi Wu, Chen Yu, Haiming Wang and Wei Hong. “Multibranch machine learning-assisted optimization and its application to antenna design”, IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 4985-4996, 2022. [20]Jiexi Yin, Qi Wu, Qun Lou, Haiming Wang, Zhining Chen, and Wei Hong. “Single-Beam 1-Bit Reflective Metasurface Using Pre-Phased Unit Cells for Normally Incident Plane Waves”, IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5496-5504, 2020. [21]Jiexi Yin, Qi Wu, Haiming Wang, Chen Yu, and Wei Hong. “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications”, IEEE Trans. Antennas Propag., vol. 67, no. 7, 2019. [22]Jiexi Yin, Qi Wu, Haiming Wang, Chen Yu, and Wei Hong. “Broadband endfire magneto-electric dipole antenna array using SICL feeding network for 5G millimeter-wave wireless”, IEEE Trans. Antennas Propag. vol. 67, no. 7, pp. 4895-4900 2019. [23]Hengfei Xu, Jianyi Zhou, Qi Wu, Zhiqiang Yu, and Wei Hong. “Wideband Low-Profile SIW Cavity-Backed Circularly Polarized Antenna for High Gain and Conical-Beam Radiation”,IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1179-1188, 2018. [24]Hengfei Xu, Jianyi Zhou, Ke Zhou, Qi Wu, Zhiqiang Yu, and Wei Hong. “Planar Wideband Circularly Polarized Cavity-backed Stacked Patch Antenna Array for Millimeter-Wave Applications”, IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5170-5179, 2018. [25]Jiexi Yin, Qi Wu, Chen Yu, Haiming Wang and Wei Hong, “Low Sidelobe Level Series-Fed Microstrip Antenna Array of Unequal Inter-Element Spacing,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1695 - 1698, 2017. [26]Xiaoyue Xia, Qi Wu, Haiming Wang, Chen Yu, and Wei Hong. “Wideband Millimeter-Wave Microstrip Reflectarray Using Dual-Resonance Unit Cells,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp.4-7, 2017. | ||||||
科研项目: | ||||||
项目名称 | 项目类别 | 项目时间 | 工作类别 | 项目金额 | ||
非定拓扑天线与射频电路智能设计理论方法 | 国家自然科学基金委员会,面上项目 | 2024-01-01至2027-12-31 | 主持 | 49万元 | ||
面向代工厂的EDA基础构件:集成电路工艺设计套件射频参数化单元自动化工具 | 国家重点研发计划课题 | 2023-12-01至2026-11-30 | 主持 | 1230万元 | ||
基于机器学习的天线与阵列多目标设计理论与方法研究 | 国家自然科学基金委员会,青年科学基金项目 | 2021-01-01至2023-12-31 | 主持 | 24万元 | ||
基于机器学习的移动终端天线容差分析与设计研究 | 江苏省科技厅,省基础研究计划项目 | 2020-07至 2023-06 | 主持 | 20万元 | ||
B5G/6G技术联合实验室2023-2024年天线智能设计技术项目 | 企业合作项目 | 2023-2024 | 主持 |
| ||
B5G/6G技术联合实验室2022-2023年天线智能设计技术项目 | 企业合作项目 | 2022-2023 | 主持 |
| ||
B5G/6G技术联合实验室2021-2022年天线智能设计技术项目 | 企业合作项目 | 2021-2022 | 主持 |
| ||
B5G/6G技术联合实验室2020-2021年天线智能设计技术项目 | 企业合作项目 | 2020-2021 | 主持 |
| ||
智能反射表面研究 | 企业合作项目 | 2020-2021 | 主持 |
| ||
大规模无线通信物理层基础理论与技术 | 科技部, 专项项目 | 2019-08 至 2023-06 | 参与 | 3562万元 | ||
非对称毫米波亚毫米波大规模 MIMO 信道测量与建模 | 科技部,课题 | 2020-11 至 2023-06 | 参与 | 528万元 | ||
大规模无线通信信道特性与理论建模 | 科技部,课题 | 2019-08 至 2023-06 | 参与 | 710万元 | ||
非对称毫米波亚毫米波大规模MIMO关键技术研究及系统验证 | 科技部,专项项目 | 2020-11 至 2023-06 | 参与 | 3603万元 | ||
基于模型数据双驱动的SAR智能化对抗高动态干扰技术研究 | 国家自然科学基金委员会,面上项目 | 2023-01-01 至 2026-12-31 | 参与 | 54万元 | ||
机器学习驱动的无源器件设计及高速ESD保护应用 | 企业合作项目 | 2021/12/02-2022/12/01 | 参与 |
| ||
机器学习辅助快速容差分析技术合作项目 | 企业合作项目 | 2019/10/17-2020/10/16 | 参与 |
| ||
低风阻超大规模阵列天线设计 | 企业合作项目 | 2019/10/30-2021/10/30 | 参与 |
| ||
专利: | ||||||
专利号 | 专利名称 | 专利类型 | ||||
ZL 201410156074.4 | 一种采用基片集成同轴线馈电的双频双圆极化天线 | 中国发明专利 | ||||
ZL 201410340506.7 | 一种多路基片集成波导功分器 | 中国发明专利 | ||||
ZL 201410342931.X | 一种采用基片集成同轴线技术的紧凑型双频枝节线耦合器 | 中国发明专利 | ||||
ZL 201410340391.1 | 一种多路基片集成波导滤波功分器 | 中国发明专利 | ||||
ZL 201410782853.5 | 一种基片集成同轴线的尺寸设计方法 | 中国发明专利 | ||||
ZL 201610078340.5 | 一种采用基片集成波导的背腔缝隙圆极化天线 | 中国发明专利 | ||||
ZL 201611184431.3 | 一种基于基片集成波导的背腔缝隙双频圆极化天线 | 中国发明专利 | ||||
ZL201910903372.8 | 一种利用多级协作式机器学习的天线快速多目标建模方法 | 中国发明专利 | ||||
ZL201810607988.6 | 采用介质加载的阶梯型缝隙的端射多波束双圆极化天线阵 | 中国发明专利 | ||||
ZL201710583689.9 | 一种采用堆叠行波天线单元的低剖面宽带圆极化阵列天线 | 中国发明专利 | ||||
ZL201910187943.2 | 一种采用L形缝隙单元的宽带SIW背腔缝隙天线阵列 | 中国发明专利 | ||||
ZL201811330535.X | 一种适用于微波毫米波频段的双模工作的宽带低剖面微带天 线 | 中国发明专利 | ||||
ZL201810608886.6 | 一种四模工作的宽带平面基片集成波导背腔缝隙天线 | 中国发明专利 | ||||
ZL201810608880.9 | 一种五模工作的宽带平面基片集成波导背腔缝隙天线 | 中国发明专利 | ||||
ZL201810252973.2 | 一种用于毫米波通信系统的宽带端射天线阵列 | 中国发明专利 | ||||
ZL202210368138.1 | 一种知数混动的毫米波片上可变螺旋电感自动综合方法 | 中国发明专利 | ||||
ZL202010639297.1 | 利用机器学习辅助优化的多层电子器件鲁棒优化设计方法 | 中国发明专利 | ||||
ZL202110417710.4 | 一种机器学习辅助的阵列环境下的天线快速建模方法 | 中国发明专利 | ||||
ZL202210485077.7 | 适用于微波毫米波频段的双模工作的宽带双极化微带天线 | 中国发明专利 | ||||
ZL202110895938.4 | 一种基于多路径的机器学习辅助天线设计方法 | 中国发明专利 | ||||
ZL201910368034.9 | 基于添加特征策略的机器学习辅助天线设计方法 | 中国发明专利 | ||||
ZL201910903372.8 | 一种利用多级协作式机器学习的天线快速多目标建模方法 | 中国发明专利 | ||||
US11069965B2 | Low-profile broadband circularly-polarized array antenna using stacked travelling wave antenna elements | 美国发明专利 | ||||