戚晨皓

发布者:沈如达发布时间:2023-10-24浏览次数:68239

职称:教授、博导

办公室:tyc234cc 太阳成集团九龙湖校区信息大楼426

办公电话:025-83792443

Emailqch@seu.edu.cn

学习经历:

2000-2004年,tyc234cc 太阳成集团,强化班(现吴健雄学院),信息工程专业

2004-2010年,tyc234cc 太阳成集团,信息与通信工程专业,博士(免研并硕博连读)

2008-2010年,美国哥伦比亚大学,电子工程专业,访问

工作经历:

2010-2014年,tyc234cc 太阳成集团,tyc234cc 太阳成集团,讲师

2014-2021年,tyc234cc 太阳成集团,tyc234cc 太阳成集团,副教授

2021-至今,tyc234cc 太阳成集团,tyc234cc 太阳成集团,教授

教授课程:

04020204,数字信号处理(秋季,本科生专业主干课,48学时,3学分)

04030614,国外电子信息工程专业基础(全英文)(春季,本科生通选课,32学时,2学分)

B004102,通信中的联合信息处理(春季,博士生课程,36学时,2学分)

S004216,通信信号处理(春季,研究生课程,36学时,2学分)

研究方向:

5G/6G无线通信、通信感知一体化、人工智能、机器学习、卫星通信、雷达信号处理、稀疏信号处理

情点击->

获奖情况:

1.        IEEE车载技术大会VTC-Fall最佳学生论文奖,2022

2.        国家级教学成果奖,二等奖,2022

3.        IEEE中国国际无线通信大会ICCC最佳论文奖,2022

4.        江苏省优秀硕士学位论文指导教师,2021

5.        江苏省教学成果奖,一等奖,2021

6.        江苏省科学技术奖三等奖,2020

7.        中国电子学会优秀硕士学位论文指导教师,2020

8.        IEEE全球通信年会GLOBECOM最佳论文奖,2019

9.        无线通信与信号处理国际会议WCSP最佳论文奖,2019

10.  IEEE Communications Letters Exemplary Editor2018

11.  IEEE Access Outstanding Associate Editor Award2018

12.  教育部高等学校科学研究技术发明奖,二等奖,2018

13.  南京市第十二届自然科学优秀学术论文奖,二等奖,2017

14.  江苏省轻工业技术进步奖,三等奖,2017

15.  南京市科学技术进步奖,二等奖,2016

16.  中国轻工业联合会科学技术进步奖,二等奖,2016

17.  江苏军民结合科技创新奖,三等奖,2013

论文著作:

已发表学术论文100余篇,特别是5G无线信道估计方面的工作受到知名SCI期刊Electronics Letters的人物专访报道。担任国际权威SCI期刊IEEE Transactions on CommunicationsIEEE Communications   LettersIEEE Open Journal of the   Communications SocietyIEEE Open Journal of Vehicular   TechnologyIEEE AccessChina Communications期刊编委。获IEEE全球通信年会GlobeCOM最佳论文奖、IEEE中国国际通信大会ICCC最佳论文奖、无线通信与信号处理国际会议WCSP最佳论文奖、IEEE车载技术年会VTC最佳学生论文奖等。

 

期刊论文:

[1]      Chenhao   Qi, Peihao Dong, Wenyan   Ma, Hua Zhang, Zaichen Zhang, and Geoffrey Ye Li, Acquisition of Channel   State Information for mmWave Massive MIMO: Traditional and Machine   Learning-based Approaches, Science   China Information Sciences, Vol.64, No.8, pp.181301, Aug. 2021封面论文.

[2]      Chenhao   Qi, Kangjian Chen,   Octavia Dobre and Geoffrey Ye Li, Hierarchical Codebook based Multiuser Beam   Training for Millimeter Massive MIMO, IEEE   Transactions on Wireless Communications, Vol.19, No.12, pp.8142-8152, Dec.   2020.

[3]      Zhaohui Li, Chenhao Qi and Geoffrey Ye Li, Low-Complexity Multicast   Beamforming for Millimeter Wave Communications, IEEE Transactions on Vehicular Technology, Vol.69, No.10,   pp.12317-12320, Oct. 2020.

[4]      Wenyan Ma, Chenhao   Qi and Geoffrey Ye Li, Machine Learning for Beam Alignment in Millimeter   Wave Massive MIMO, IEEE Wireless   Communications Letters, Vol.9, No.6, pp.875-878, June 2020.

[5]      Chenhao   Qi, Xuyao Sun, Yansha   Deng and Nallanathan Arumugam, QoS Constrained Pilot Allocation Scheme for   Massive MIMO Systems, IEEE Transactions   on Vehicular Technology, Vol.69, No.5, pp.5661-5665, May 2020.

[6]      Wenyan Ma, Chenhao   Qi and Geoffrey Ye Li, High-Resolution Channel Estimation for   Frequency-Selective mmWave Massive MIMO System, IEEE Transactions on Wireless Communications, Vol.19, No.5,   pp.3517-3529, May 2020.

[7]      Wenyan Ma, Chenhao   Qi, Zaichen Zhang and Julian Cheng, Sparse Channel Estimation and Hybrid   Precoding Using Deep Learning for Millimeter Wave Massive MIMO, IEEE Transactions on Communications, Vol.68,   No.5, pp.2838-2849, May 2020.

[8]      Chenhao   Qi, Huajian Chen, Yansha   Deng and Nallanathan Arumugam, Energy Efficient Multicast Precoding for   Multiuser Multibeam Satellite Communications, IEEE Wireless Communications Letters, Vol.9, No.4, pp.567-570,   Apr. 2020.

[9]      Kangjian Chen, Chenhao Qi and Geoffrey Ye Li, Two-Step Codeword Design for   Millimeter Wave Massive MIMO Systems with Quantized Phase Shifters, IEEE Transactions on Signal Processing,   Vol.68, No.1, pp.170-180, Jan. 2020.

[10]   Xuyao Sun, Chenhao   Qi and Geoffrey Ye Li, Beam Training and Allocation for Multiuser   Millimeter Wave Massive MIMO Systems, IEEE   Transactions on Wireless Communications, Vol.18, No.2, pp.1041-1053, Feb.   2019.

[11]   Xuyao Sun and Chenhao Qi, Codeword Selection and Hybrid Precoding for Multiuser   Millimeter Wave Massive MIMO Systems, IEEE   Communications Letters, Vol.23, No.2, pp.386-389, Feb. 2019.

[12]   Jun Tao, Chenhao   Qi and Yongming Huang, Regularized Multipath Matching Pursuit for Sparse   Channel Estimation in Millimeter Wave Massive MIMO System, IEEE Wireless Communications Letters,   Vol.8, No.1, pp.169-172, Feb. 2019.

[13]   Kangjian Chen and Chenhao Qi, Beam Training based on Dynamic Hierarchical Codebook   for Millimeter Wave Massive MIMO, IEEE Communications   Letters, Vol.23, No.1, pp.132-135, Jan. 2019.

[14]   Shiwen He, Chenhao   Qi, Yongming Huang, Qi Hou and Arumugam Nallanathan, Two-level   Transmission Scheme for Cache-enabled Fog Radio Access Networks, IEEE Transactions on Communications,   Vol.67, No.1, pp.445-456, Jan. 2019.

[15]   Miao Pu, Bingcheng Zhu, Chenhao Qi, Yi Jin and Chong Lin A Model-Driven Deep Learning   Method for LED Nonlinearity Mitigation in OFDM-based Optical Communications, IEEE Access, Vol.7, No.1,   pp.71436-71446, Dec.2019.

[16]   Wenyan Ma and Chenhao Qi, Beamspace Channel Estimation for Millimeter Wave   Massive MIMO System with Hybrid Precoding and Combining, IEEE Transactions on Signal Processing, Vol.66, No.18,   pp.4839-4853, Sep. 2018.

[17]   Peng Chen, Chenhao   Qi, Lenan Wu and Xianbin Wang, Waveform Design for Kalman Filter-Based   Target Scattering Coefficient Estimation in Adaptive Radar System, IEEE Transactions on Vehicular Technology,   Vol.67, No.12, pp.11805-11817, Dec. 2018.

[18]   Chenhao   Qi and Wang Xin,   Precoding Design for Energy Efficiency of Multibeam Satellite Communications,   IEEE Communications Letters,   Vol.22, No.9, pp.1826-1829, Sep. 2018.

[19]   Pu Miao, Chenhao   Qi, Lanting Fang, Kang Song and Qingkai Bu, Deep clipping noise   mitigation using ISTA with the specified observations for LED-based DCO-OFDM   system, IET Communications, Vol.12,   No.20, pp.2582-2591, Nov. 2018.

[20]   Wenyan Ma and Chenhao Qi, Channel Estimation for 3-D Lens Millimeter Wave   Massive MIMO System, IEEE   Communications Letters, Vol.21, No.9, pp.2045-2048, Sep. 2017.

[21]   Yuhan Sun, and Chenhao Qi. Weighted Sum-Rate Maximization for Analog Beamforming   and Combining in Millimeter Wave Massive MIMO Communications, IEEE Communications Letters, Vol.21,   No.8, pp.1883-1886, Aug. 2017.

[22]   Peng Chen, Chenhao   Qi and Lenan Wu, Antenna Placement Optimization for Compressed   Sensing-Based Distributed MIMO Radar, IET   Radar, Sonar & Navigation, Vol.11, No.2, pp.285-293, Apr. 2017.

[23]   Peng Chen, Chenhao   Qi, Lenan Wu and Xianbin Wang, Estimation of Extended Targets Based on   Compressed Sensing in Cognitive Radar System, IEEE Transactions on Vehicular Technology, Vol.66, No.2,   pp.941-951, Feb. 2017.

[24]   Zhen Gao, Linglong Dai, Chenhao Qi, Chau Yuen, and Zhaocheng Wang. Near-Optimal Signal   Detector Based on Structured Compressive Sensing for Massive SM-MIMO, IEEE Transactions on Vehicular Technology,   Vol.66, No.2, pp.1860-1865, Feb. 2017.

[25]   Shiwen He, Chenhao   Qi, Yongpeng Wu and Yongming Huang, Energy-Efficient Transceiver Design   for Hybrid Sub-Array Architecture MIMO Systems, IEEE Access, Vol.4, pp.9895-9905, Jan. 2017.

[26]   Shiwen He, Yongming Huang, Yanru Shi, Chenhao Qi, Shi Jin, and Luxi Yang,   Coordinated Multicell Beamforming for Massive MIMO Systems Based on   Uplink-Downlink Duality, IET   Communications, Vol.10, No.17, pp.2380-2390, Nov. 2016.

[27]   Shiwen He, Yongming Huang, Ying Lu, Chenhao Qi, and Luxi Yang. Resource   Efficiency: A New Beamforming Design for Multicell Multiuser Systems, IEEE Transactions on Vehicular Technology,   Vol.65, No.8, pp.6063-6074, Aug. 2016.

[28]   Peng Chen, Lenan Wu, and Chenhao Qi. Waveform Optimization for Target Scattering   Coefficients Estimation under Detection and Peak-to-Average Power Ratio   Constraints in Cognitive Radar, Circuits,   Systems and Signal Processing, Vol.35, No.1, pp.163-184, Jan. 2016.

[29]   Chenhao   Qi, Lenan Wu, Yongming   Huang, and A. Nallanathan. Joint Design of Pilot Power and Pilot Pattern for   Sparse Cognitive Radio Systems, IEEE   Transactions on Vehicular Technology, Vol.64, No.11, pp.5384-5390, Nov.   2015.

[30]   Chenhao   Qi, Arumugam Nallanathan,   and Lenan Wu. Joint Optimization of Secret Key Capacity and Sparse Channel   Estimation based on Pilot Power Allocation,   Electronics Letters, Vol.51, No.13, pp.1033-1035, June 2015.

[31]   Chenhao   Qi, Yongming Huang, and   Shi Jin. An Overview of Massive MIMO System, Journal of Data Acquisition and Processing (in Chinese), Vol.30,   No.3, pp.544-551, May 2015. (Invited)

[32]   Chenhao   Qi, Guosen Yue, Lenan Wu,   Yongming Huang and A. Nallanathan. Pilot Design Schemes for Sparse Channel   Estimation in OFDM Systems, IEEE   Transactions on Vehicular Technology, Vol.64, No.4, pp.1493-1505, Apr.   2015.

[33]   Chenhao   Qi and Lenan Wu. Uplink   Channel Estimation for Massive MIMO Systems Exploring Joint Channel Sparsity.   Electronics Letters, Vol.50, No.   23, pp.1770-1772, Nov. 2014.

[34]   Chenhao   Qi. Interview:“By   exploring the joint sparsity of the uplink channel, the pilot overhead can be   substantially reduced”, Electronics   Letters, Vol.50, No. 23, pp.1650, Nov. 2014.

[35]   Chenhao   Qi, Lenan Wu, and   Pengcheng Zhu. Sparse Channel Estimation and Pilot Optimization for Cognitive   Radio. Journal of Electronics &   Information Technology (in Chinese), Vol. 36, No.4, pp. 763-768, Apr.   2014.

[36]   Chenhao   Qi, Guosen Yue, Lenan Wu   and A. Nallanathan. Pilot Design for Sparse Channel Estimation in OFDM-Based   Cognitive Radio Systems, IEEE   Transactions on Vehicular Technology, Vol.63, No.2, pp.982-987, Feb.   2014.

[37]   Chenhao   Qi and Lenan Wu. Sparse   Channel Estimation for Wavelet-based Underwater Acoustic Communications. Transactions on Emerging   Telecommunications Technologies, Vol.23, No.8, pp.764-776, Dec. 2012.

[38]   Geng Wei, Lenan Wu, Shuihua Wang, and Chenhao Qi. Fast Mode Selection for   H.264 Video Coding Standard based on Motion Region Classification. Multimedia Tools and Applications,   Vol.58, No.3, pp.453-466, June 2012.

[39]   Chenhao   Qi and Lenan Wu. A Study   of Deterministic Pilot Allocation for Sparse Channel Estimation in OFDM   Systems. IEEE Communications Letters,   Vol.16, No.5, pp.742-744, May 2012.

[40]   Wei Ke, Lenan Wu, and Chenhao Qi. Spring-Model-Based Wireless Localization in   Cooperative User Environments. IEICE Transactions   on Communications, Vol.E95-B, No.5, pp.1860-1863, May 2012.

[41]   Chenhao   Qi and Lenan Wu.   Tree-based backward pilot generation for sparse channel estimation. Electronics Letters, Vol.48, No.9,   pp.501-503, Apr. 2012.

[42]   Chenhao   Qi and Lenan Wu. Optimized   pilot placement for sparse channel estimation in OFDM systems. IEEE Signal Processing Letters.   Vol.18, No.12, pp.749-752, Dec. 2011.

[43]   Chenhao   Qi, Xiaodong Wang and   Lenan Wu. Underwater Acoustic Channel Estimation based on Sparse Recovery   Algorithms. IET Signal Processing.   Vol.5, No.8, pp.739-747, Dec. 2011.

 

会议论文:

[1]      Ruotong Xu, Chenhao Qi and Kangjian Chen, Parameter Estimation and Beam   Tracking in Integrated Sensing and Communication System, IEEE 96th Vehicular Technology Conference (VTC-Fall), London/Beijing,   UK/China, Sep. 2022, pp. 1-5. (最佳学生论文奖)

[2]      Ying Wang and Chenhao Qi, Deep Semantic Coding for Wireless Image Retrieval, IEEE 96th Vehicular Technology Conference   (VTC-Fall), London/Beijing, UK/China, Sep. 2022, pp. 1-5.

[3]      Kangjian Chen, Chenhao Qi and Cheng-Xiang Wang, Two-Stage Hybrid-Field Beam   Training for Ultra-Massive MIMO Systems, IEEE/CIC   International Conference on Communications in China (ICCC), Foshan,   China, Aug. 2022, pp.1074-1079. (最佳论文奖)

[4]      Pengju Zhang and Chenhao Qi, Beam Allocation based on Deep Learning for Wideband   mmWave Massive MIMO, 2022 IEEE   International Conference on Communications (ICC), Seoul, South Korea, May   2022, pp.1-6.

[1]      Wei Ci, Chenhao   Qi, Geoffrey Ye Li and Shiwen Mao, Hybrid Beamforming Design for Covert   Multicast mmWave Massive MIMO Communications, 2021 IEEE Global Communications Conference (GlobeCOM), Madrid,   Spain, Dec. 2021, pp.1-6.

[2]      Hongwei Peng, Chenhao Qi, Yang Chen, Qian Zhang, Dong Chen and Rui Ding,   Channel Modeling and Signal Transmission for Land Mobile Satellite MIMO, 2021 IEEE Global Communications Conference   (GlobeCOM), Madrid, Spain, Dec. 2021, pp.1-6.

[3]      Qiang Liu, Chenhao   Qi, Xianghao Yu and Geoffrey Ye Li, MmWave MIMO Hybrid Precoding Design   Using Phase Shifters and Switches, 2021 IEEE Global Communications Conference   (GlobeCOM), Madrid, Spain, Dec.   2021, pp.1-6.

[4]      Jinming Zhang and Chenhao Qi, Channel Estimation for mmWave Satellite   Communications with Reconfigurable Intelligent Surface, 2021 IEEE Global Communications Conference (GlobeCOM), Madrid,   Spain, Dec. 2021, pp.1-6.

[5]      Zhaohui Li and Chenhao Qi, Beam Training with Limited Feedback for Multiuser   mmWave Massive MIMO, 2020 IEEE Global   Communications Conference (GlobeCOM), Taipei, Taiwan, Dec. 2020, pp.1-6.

[6]      Yuhan Sun, Chenhao   Qi, and Geoffrey Ye Li, Computation-Aided Adaptive Codebook Design for   Millimeter Wave Massive MIMO, 2020 IEEE   Global Communications Conference (GlobeCOM), Taipei, Taiwan, Dec. 2020,   pp.1-6.

[7]      Jinming Zhang, Chenhao Qi, Ping Li and Ping Lu, Channel Estimation for   Reconfigurable Intelligent Surface Aided Massive MIMO System, IEEE 21st International Workshop on Signal   Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, May   2020, pp.1-5.

[8]      Kangjian Chen, Chenhao Qi, Octavia A. Dobre and Geoffrey Ye Li, Multiuser Beam   Training using Adaptive Hierarchical Codebook for mmWave Massive MIMO, 2019 IEEE Global Communications Conference   (GlobeCOM), Waikoloa, Hawaii, USA, Dec. 2019, pp.1-6. (最佳论文奖)

[9]      Wenyan Ma, Chenhao   Qi, Zaichen Zhang and Julian Cheng, Deep Learning for Compressed Sensing   Based Channel Estimation in Millimeter Wave Massive MIMO, The Eleventh International Conference on   Wireless Communications and Signal Processing (WCSP), Xi'an, China, Oct.   2019, pp.1-6. (最佳论文奖)

[10]   Pu Miao, Chenhao   Qi, Yi Jin, Kang Song and Teng Yu, Kernels Pruning for Volterra Digital   Predistortion Using Sparse Bayesian Learning, The Eleventh International Conference on Wireless Communications and   Signal Processing (WCSP), Xi'an, China, Oct. 2019, pp.1-6.

[11]   Wenyan Ma and Chenhao Qi, ESPRIT-based Channel Estimation for   Frequency-Selective Millimeter Wave Massive MIMO System, 2019 IEEE International Conference on   Communications (ICC), Shanghai, China, May 2019, pp.1-6.

[12]   Xuyao Sun and Chenhao Qi, Multiuser Beam Allocation for Millimeter Wave Massive   MIMO Systems, 2019 IEEE International   Conference on Communications (ICC), Shanghai, China, May 2019, pp.1-6.

[13]   Huajian Chen and Chenhao Qi, User Grouping for Sum-rate Maximization in Multiuser   Multibeam Satellite Communications, 2019 IEEE   International Conference on Communications (ICC), Shanghai, China, May   2019, pp.1-6.

[14]   Kangjian Chen and Chenhao Qi, Beam Design with Quantized Phase Shifters for   Millimeter Wave Massive MIMO, 2018 IEEE   Global Communications Conference (GlobeCOM), Abu Dhabi, UAE, Dec. 2018,   pp.1-6.

[15]   Zhikang Xia, Chenhao Qi and Tengxiang Zhang, Model based Beamspace Channel   Estimation for Millimeter Wave Massive MIMO System, The Tenth International Conference on Wireless Communications and   Signal Processing (WCSP), Hangzhou, China, Oct. 2018, pp.1-6.

[16]   Wenyan Ma, Chenhao   Qi, Over-sampled Beamspace Channel Estimation for Millimeter Wave Massive   MIMO, 2018 IEEE International   Conference on Communications (ICC), Kansas City, USA, May 2018, pp.1-6.

[17]   Yuhan Sun, Chenhao   Qi. Analog Beamforming and Combining Based on Codebook in Millimeter Wave   Massive MIMO Communications, 2017 IEEE   Global Communications Conference (GlobeCOM), Singapore, Dec. 2017,   pp.1-6.

[18]   Huajian Chen, Chenhao Qi. Group Bayesian Sparse Channel Estimation for Massive   MIMO Systems, 2017 IEEE Global   Communications Conference (GlobeCOM), Singapore, Dec. 2017, pp.1-6.

[19]   Huajian Chen, Chenhao Qi. Underwater Acoustic Channel Estimation via Fast   Bayesian Matching Pursuit, The Ninth   International Conference on Wireless Communications and Signal Processing   (WCSP), Nanjing, China, Oct. 2017, pp.1-6.

[20]   Xin Wang, Chenhao   Qi. Algorithm for Modeling Dual-Polarized MIMO Channel in Land Mobile   Satellite Communications, The Ninth   International Conference on Wireless Communications and Signal Processing   (WCSP), Nanjing, China, Oct. 2017.

[21]   Pu Miao, Chenhao   Qi, Lenan Wu, Bingcheng Zhu, Kangjian Chen. Compressed Sensing for   Clipping Noise Cancellation in DCO-OFDM Systems Based on Observation   Interference Mitigation, The Ninth   International Conference on Wireless Communications and Signal Processing   (WCSP), Nanjing, China, Oct. 2017.

[22]   Chenhao   Qi, Xin Wang, Yongming   Huang. Selection of Nonzero Taps for Sparse Linear Equalizer. IEEE 83rd Vehicular Technology Conference   (VTC-Spring), pp.1-5, Nanjing, China, May 2016.

[23]   Chenhao   Qi, Yongming Huang, Shi   Jin and Lenan Wu. Sparse Channel Estimation Based on Compressed Sensing for   Massive MIMO Systems. IEEE   International Conference on Communications (ICC), pp.4558-4563, London,   June 2015.

[24]   Chenhao   Qi and Lenan Wu.   Comparisons of Channel Estimation for OFDM-based and Wavelet-based Underwater   Acoustic Communications. IEEE Wireless   Communications and Networking Conference (WCNC), pp.2920-2925, Shanghai,   Apr. 2013.

[25]   Chenhao   Qi, Lenan Wu and Xiaodong   Wang. Underwater Acoustic Channel Estimation via Complex Homotopy. IEEE International Conference on   Communications (ICC), pp. 3821-3825, Ottawa, June 2012.

[26]   Chenhao   Qi and Lenan Wu. A hybrid   compressed sensing algorithm for sparse channel estimation in MIMO OFDM   systems. IEEE 36th International   Conference on Acoustics, Speech, and Signal Processing (ICASSP),   pp.3488-3491, Prague, May 2011.

[27]   Chenhao   Qi and Lenan Wu.   Application of Compressed Sensing to DRM Channel Estimation. IEEE 73rd Vehicular Technology Conference   (VTC-Spring), pp.1-5, Budapest, May 2011.

科研项目:

项目名称

项目类别

项目时间

工作类别

项目金额

复杂电磁环境下的通信感知一体化技术研究

国家自然科学基金重点项目

2023.1-2026.12

应用基础研究

XXX

面向用户服务的智能多波束赋形与空时频抗干扰技术

国家重点研发计划项目课题

2021.12-2025.11

应用基础研究

XXX

毫米波大规模MIMO的信道状态信息获取与跟踪技术研究

国家自然科学基金项目

2021.1-2024.12

应用基础研究

XXX

多用户毫米波大规模MIMO系统的波束训练与混合波束成形

国家自然科学基金项目

2019.1-2019.12

应用基础研究

XXX

大规模MIMO系统中信道估计与导频设计研究

国家自然科学基金项目

2014.01-2016.12

应用基础研究

XXX

卫星XX理论与技术研究

国防预研基金(国家级)

2015.8-2017.8

前沿技术研究

XXX

XX系统技术

国防预研项目(国家级)

2016.12-2020.9

应用基础研究

XXX

FDD   LTE-Advanced系统试验设备开发

国家科技重大专项

2012.1-2013.12

应用基础研究

XXX

5G热点高容量场景组网技术与试验系统研发

国家科技重大专项

2016.1.1-2017.12.31.

应用基础研究

XXX

基于压缩感知的OFDM信道估计理论与关键技术研究

教育部博士点基金

2013.1-2015.12

应用基础研究

XXX

水声通信中的稀疏信号处理理论与技术研究

江苏省自然科学基金(面上项目)

2016.7-2019.6

应用基础研究

XXX

面向5G应用的无线宽带物联网传输设备的研发及产业化

江苏省科技成果转化项目

2019.3-2022.9

产学研

XXX

毫米波MIMO通信物理层技术研究

中兴通讯产学研合作项目

2019.10-2020.10

产学研

XXX

卫星XXX

上海航天科技创新基金项目

2016.7-2018.7

应用基础研究

XXX

星载XXX

中国空间技术研究院创新基金

2010.12-2011.12.

应用基础研究

XXX

大数据传输中的稀疏性研究

厅局级项目

2016.1-2017.12.

应用基础研究

XXX

通过调幅广播发送的农情信息服务系统

横向项目

2012.11-2013.11.

产学研

XXX

专利:

专利号

专利

专利类型

ZL 202111224452.4

一种基于深度学习的多用户宽带毫米波通信资源分配方法及系统

发明专利授权

ZL 202110821494.X

一种部分连接架构下的多用户毫米波通信波束成形方法

发明专利授权

ZL 202110623890.1

一种基于深度强化学习的毫米波通信波束训练方法

发明专利授权

ZL 202110594475.8

一种智能反射表面辅助的毫米波系统中的波束训练方法

发明专利授权

ZL 201910699093.4

一种低复杂度毫米波多播波束成形方法

发明专利授权

ZL 201910715824.X

一种基于码本的毫米波通信多用户并行波束训练方法

发明专利授权

ZL 201910609278.1

一种基于深度学习的毫米波信道波束训练方法

发明专利授权

ZL 201910477000.3

一种毫米波通信的混合预编码结构、混合合并结构及方法

发明专利授权

ZL 201910910231.9

一种具有恒模约束的毫米波MIMO系统波束成形方法

发明专利授权

ZL 201811569312.9

一种多波束卫星通信系统用户分组的方法及其装置

发明专利授权

ZL 201811553452.7

一种毫米波通信码本设计方法

发明专利授权

ZL 201811324848.4

一种毫米波通信多径信道动态波束训练方法

发明专利授权

ZL 201710717443.6

多用户毫米波通信系统的波束分配方法及其装置和系统

发明专利授权

ZL 201710413002.7

毫米波通信的十字形信道估计方法、装置及系统

发明专利授权

ZL   201610592999.2

可生成导频的交织单元及无线通信数据发送、接收装置

发明专利授权

ZL   201610322009.3

一种多小区大规模MIMO系统导频分配方法

发明专利授权

ZL   201410282949.5

一种联合稀疏信道估计方法、装置及系统

发明专利授权

ZL   201310687413.7

一种导频排布确定方法及基站

发明专利授权

ZL   201210352607.7

认知无线电中基于稀疏信道估计的导频设计方法

发明专利授权

ZL   201210350713.1

稀疏信道的导频优化方法、装置和信道估计方法

发明专利授权

US20160294525A1

Method   for determining pilot arrangement and base station

美国专利授权

EP3068065B1

Pilot   frequency arrangement determination method and base station

欧洲专利授权

WO2015196384A1

Joint   sparse channel estimation method, device and system

PCT国际专利

WO2014044042A1

Pilot   frequency optimizing method, apparatus and channel estimating method for   sparse channel,

PCT国际专利

WO2015085820A1

Pilot   frequency arrangement determination method and base station

PCT国际专利

202210219159.7

一种基于无线通信的固态纳米孔基因测序数据通信方法

发明专利申请

202210185569.4

毫米波通信感知一体化系统的发射波束成形方法

发明专利申请

202210597131.7

一种超大规模阵列通信系统的两阶段波束训练方法

发明专利申请

202210598636.5

一种毫米波通信多用户系统合作感知方法

发明专利申请

202210381030.6

一种抑制波束间干扰的相控阵波束成形方法

发明专利申请